80 research outputs found

    Algebraic Properties of Qualitative Spatio-Temporal Calculi

    Full text link
    Qualitative spatial and temporal reasoning is based on so-called qualitative calculi. Algebraic properties of these calculi have several implications on reasoning algorithms. But what exactly is a qualitative calculus? And to which extent do the qualitative calculi proposed meet these demands? The literature provides various answers to the first question but only few facts about the second. In this paper we identify the minimal requirements to binary spatio-temporal calculi and we discuss the relevance of the according axioms for representation and reasoning. We also analyze existing qualitative calculi and provide a classification involving different notions of a relation algebra.Comment: COSIT 2013 paper including supplementary materia

    On Distributive Subalgebras of Qualitative Spatial and Temporal Calculi

    Full text link
    Qualitative calculi play a central role in representing and reasoning about qualitative spatial and temporal knowledge. This paper studies distributive subalgebras of qualitative calculi, which are subalgebras in which (weak) composition distributives over nonempty intersections. It has been proven for RCC5 and RCC8 that path consistent constraint network over a distributive subalgebra is always minimal and globally consistent (in the sense of strong nn-consistency) in a qualitative sense. The well-known subclass of convex interval relations provides one such an example of distributive subalgebras. This paper first gives a characterisation of distributive subalgebras, which states that the intersection of a set of n≥3n\geq 3 relations in the subalgebra is nonempty if and only if the intersection of every two of these relations is nonempty. We further compute and generate all maximal distributive subalgebras for Point Algebra, Interval Algebra, RCC5 and RCC8, Cardinal Relation Algebra, and Rectangle Algebra. Lastly, we establish two nice properties which will play an important role in efficient reasoning with constraint networks involving a large number of variables.Comment: Adding proof of Theorem 2 to appendi

    Answer Set Programming Modulo `Space-Time'

    Full text link
    We present ASP Modulo `Space-Time', a declarative representational and computational framework to perform commonsense reasoning about regions with both spatial and temporal components. Supported are capabilities for mixed qualitative-quantitative reasoning, consistency checking, and inferring compositions of space-time relations; these capabilities combine and synergise for applications in a range of AI application areas where the processing and interpretation of spatio-temporal data is crucial. The framework and resulting system is the only general KR-based method for declaratively reasoning about the dynamics of `space-time' regions as first-class objects. We present an empirical evaluation (with scalability and robustness results), and include diverse application examples involving interpretation and control tasks

    Reasoning mechanism for cardinal direction relations

    Get PDF
    In the classical Projection-based Model for cardinal directions [6], a two-dimensional Euclidean space relative to an arbitrary single-piece region, a, is partitioned into the following nine tiles: North-West, NW(a); North, N(a); North-East, NE(a); West, W(a); Neutral Zone, O(a);East, E(a); South-West, SW(a); South, S(a); and South-East,SE(a). In our Horizontal and Vertical Constraints Model [9], [10] these cardinal directions are decomposed into sets corresponding to horizontal and vertical constraints. Composition is computed for these sets instead of the typical individual cardinal directions. In this paper, we define several whole and part direction relations followed by showing how to compose such relations using a formula introduced in our previous paper [10]. In order to develop a more versatile reasoning system for direction relations, we shall integrate mereology, topology, cardinal directions and include their negations as well. © 2010 Springer-Verlag

    Allen's Interval Algebra Makes the Difference

    Get PDF
    Allen's Interval Algebra constitutes a framework for reasoning about temporal information in a qualitative manner. In particular, it uses intervals, i.e., pairs of endpoints, on the timeline to represent entities corresponding to actions, events, or tasks, and binary relations such as precedes and overlaps to encode the possible configurations between those entities. Allen's calculus has found its way in many academic and industrial applications that involve, most commonly, planning and scheduling, temporal databases, and healthcare. In this paper, we present a novel encoding of Interval Algebra using answer-set programming (ASP) extended by difference constraints, i.e., the fragment abbreviated as ASP(DL), and demonstrate its performance via a preliminary experimental evaluation. Although our ASP encoding is presented in the case of Allen's calculus for the sake of clarity, we suggest that analogous encodings can be devised for other point-based calculi, too.Comment: Part of DECLARE 19 proceeding

    Quantized spin waves in the metallic state of magnetoresistive manganites

    Full text link
    High resolution spin waves measurements have been carried out in ferromagnetic (F) La(1-x)(Sr,Ca)xMnO3 with x(Sr)=0.15, 0.175, 0.2, 0.3 and x(Ca)=0.3. In all q-directions, close to the zone boundary, the spin wave spectra consist of several energy levels, with the same values in the metallic and the x\approx 1/8 ranges. Mainly the intensity varies, jumping from the lower energy levels determined in the x\approx 1/8 range to the higher energy ones observed in the metallic state. On the basis of a quantitative agreement found for x(Sr)=0.15 in a model of ordered 2D clusters, the spin wave anomalies of the metallic state can be interpreted in terms of quantized spin waves within the same 2D clusters, embedded in a 3D matrix.Comment: 4 pages, 5 figure

    Tractable Fragments of Temporal Sequences of Topological Information

    Full text link
    In this paper, we focus on qualitative temporal sequences of topological information. We firstly consider the context of topological temporal sequences of length greater than 3 describing the evolution of regions at consecutive time points. We show that there is no Cartesian subclass containing all the basic relations and the universal relation for which the algebraic closure decides satisfiability. However, we identify some tractable subclasses, by giving up the relations containing the non-tangential proper part relation and not containing the tangential proper part relation. We then formalize an alternative semantics for temporal sequences. We place ourselves in the context of the topological temporal sequences describing the evolution of regions on a partition of time (i.e. an alternation of instants and intervals). In this context, we identify large tractable fragments

    Positions, Regions, and Clusters: Strata of Granularity in Location Modelling

    Full text link
    Abstract. Location models are data structures or knowledge bases used in Ubiquitous Computing for representing and reasoning about spatial relationships between so-called smart objects, i.e. everyday objects, such as cups or buildings, containing computational devices with sensors and wireless communication. The location of an object is in a location model either represented by a region, by a coordinate position, or by a cluster of regions or positions. Qualitative reasoning in location models could advance intelligence of devices, but is impeded by incompatibilities between the representation formats: topological reasoning applies to regions; directional reasoning, to positions; and reasoning about set-membership, to clusters. We present a mathematical structure based on scale spaces giving an integrated semantics to all three types of relations and representations. The structure reflects concepts of granularity and uncertainty relevant for location modelling, and gives semantics to applications of RCC-reasoning and projection-based directional reasoning in location models
    • …
    corecore